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Abstract. In hydrology, the two somewhat competing modelling philosophies of bottom-up and top-down approaches are 

the basis of most process-based models. Differing mostly (1) in their respective degree of detail in resolving the modelling 

domain and (2) in their respective degree of explicitly treating conservation laws, these two philosophies suffer from similar 

limitations. Nevertheless, a better understanding of their respective basis (i.e. micro-scale vs. macro-scale) as well as their 10 

respective short comings bears the potential of identifying the complementary value of the two philosophies for improving 

our models. In this manuscript we analyse several frequently communicated beliefs and assumptions to identify, discuss and 

emphasize the functional similarity of the two modelling philosophies. We argue that deficiencies in model applications 

largely do not depend on the modelling philosophy but rather on the way a model is implemented. Based on the premises 

that top-down models can be implemented at any desired degree of detail and that any type of model remains to some degree 15 

conceptual we argue that a convergence of the two modelling strategies may hold some value for progressing the 

development of hydrological models.  

1 What is the issue? 

Hydrological models are used to predict floods, droughts, groundwater recharge and land-atmosphere exchange, and are of 

critical importance as tools to develop strategies for water resources planning and management. This is in particular true in 20 

the light of the increasing effects of climate and land-use change on the terrestrial water cycle. Yet, in spite of their central 

importance, these models frequently fail to reproduce the hydrological response in periods they have not been calibrated for, 

thereby providing unreliable predictions.   

As models aim to encapsulate our understanding of the system, their weakness for predictions suggests that, besides the 

impact of observational uncertainties (e.g. Beven and Westerberg, 2011), at least some of the underlying processes that 25 

control how water and energy are stored in, transferred through and released from different parts of a catchment are not 

sufficiently well represented, in terms of both, parameters and parameterizations, in state-of-the-art current generation 

models. 
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The hydrologic modeling community sets out to design process-based system descriptions explicitly based on our 

understanding of the actual mechanisms involved using a range of different philosophies and approaches. The one end of the 

spectrum are detailed, high resolution descriptions of small-scale processes that are numerically integrated to larger scales 

(e.g. catchments). These models are commonly referred to as bottom-up or “physically based”. The other end of the 

spectrum are less detailed, often spatially lumped representations of the system at the catchment-scale. These models, 5 

consisting of suites of storage elements (“buckets”) that are linked by fluxes, are typically referred to as top-down or 

“conceptual” models. More generally, the “bottom-up” and “top-down” distinction reflects two end points along the 

continuum of complexity and existing hydrologic models are typically classified into one of these two groups depending on 

their process complexity, i.e., the extent to which models explicitly represent specific processes; and their spatial complexity, 

i.e., the extent to which models explicitly represent details of the landscape and the lateral flow of water across model 10 

elements. In addition, formulations of bottom-up models are expressed through a detailed and explicit treatment of 

conservation of mass, energy and momentum as well as parametrizations that are directly based on observations of fluxes on 

the small scale (i.e. the closure relations; Beven, 2006a). Current-generation top-down models are less detailed in that aspect.  

Over the past four decades innumerable studies illustrated the value but also the limitations of these two competing 

modeling philosophies, i.e. top-down vs. bottom-up. Irrespective of the model type, it is often observed that, for training 15 

periods and with respect to the calibration objective(s), models exhibit considerable skill to reproduce the response patterns 

of a given system. However, it is likewise observed that many models cannot adequately reproduce aspects of the observed 

system response other than the calibration objectives, and which may include descriptors of emergent patterns, i.e. catchment 

signatures, such as flow duration curves (e.g. Jothityangkoon et al. 2001; Eder et al., 2003; Yadav et al., 2007; Martinez and 

Gupta, 2011; Sawicz et al., 2011; Euser et al., 2013; Willems et al., 2014; Westerberg and McMillan, 2015) but also 20 

variables the model may not have been calibrated to, such as ground- or soil water fluctuations. This failure to mimic system 

internal dynamics and patterns in a meaningful way indicates that models do a good curve-fitting job, but do not represent 

the dominant processes of the system in a meaningful way, thereby providing the right answers for the wrong reasons (cf. 

Kirchner, 2006). Together with the largely inevitable errors introduced by data uncertainty (e.g. Beven and Westerberg, 

2011; Beven et al., 2011; Renard et al., 2011; Beven, 2013; McMillan et al., 2012; Kauffeldt et al., 2013; McMillan and 25 

Westerberg, 2015; Coxon et al., 2015) and insufficient model evaluation and testing (cf. Klemes, 1986; Wagener 2003; Clark 

et al., 2008; Gupta et al., 2008, 2012; Andreassian et al., 2009), models then often experience substantial performance 

decreases when used to predict the hydrological response for time periods they were not calibrated for .  

Notwithstanding the similar skills of their models (e.g. Reed et al. 2004; Breuer et al., 2009; Smith et al., 2012; Lobligeois 

et al., 2013, Vansteeenkiste et al., 2014), there is surprisingly little fruitful exchange between the bottom-up and top-down 30 

modelling communities. Top-down models are criticized for lacking a robust physical or theoretical basis (e.g. Paniconi and 

Putti, 2015; Fatichi et al., 2016), whereas bottom-up models are often viewed as having inferior representations of sub-grid 

variability (e.g. Beven and Cloke, 2012) and are not sufficiently agile to represent the dominant processes in different 

environments (e.g. Mendoza et al., 2015). Even more, instead of joining forces and integrating the respective efforts, 
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communication between the communities is often limited to mutually highlighting the deficiencies of and dismissing the 

respective modelling strategies.  

We think that to achieve progress in the discipline of scientific hydrology and to develop models for more reliable 

predictions, it is necessary for the different hydrologic modelling communities to take a step back. Reflecting on failures and 

successes can not only help to design better models but also to appreciate the complementary nature and value of microscale 5 

process understanding on the one hand and the quest for general laws at the catchment scale (Klemes, 1983; Dooge, 1986; 

Sivapalan, 2005) on the other hand. This commentary is based on detailed and, at times, refreshingly heated discussions 

during and after the 1st Workshop on Improving the Theoretical Underpinnings of Hydrologic Models (Bertinoro, April 

2016). Our aim is to identify, discuss and clarify common misunderstandings and misinterpretations of competing modeling 

approaches. By emphasizing the importance of zooming out to the macroscale we intend to scrutinize the value of top-down 10 

models with respect to bottom-up models. More generally, we provide a perspective of how to take advantage of different 

modelling philosophies in order to improve our predictions. 

 

2 Modelling philosophies  

2.1 The basis of bottom-up models 15 

Bottom-up models provide a description of the flow system that is physically consistent with our understanding of the 

forces acting on and controlling the release of water from the control volumes under consideration. The individual control 

volumes in a model domain are typically designed as regular grids at spatial resolutions between centimetres and hundreds of 

meters, each representing the lateral and vertical flow processes of water (and energy) through the porous and heterogeneous 

soil column and at the land-vegetation-atmosphere interface. As basic building blocks of these models, output from the 20 

individual control volumes, i.e. the boundary fluxes (Beven, 2006a), is then aggregated along their respective surface and 

subsurface flow directions through the adjacent control volumes to the channel and eventually routed to the catchment outlet.    

The bottom-up strategy therefore has two main features: It explicitly accounts for spatial heterogeneity and its influence on 

the hydrological response; and it provides a rigorous and physically consistent way to encapsulate and formalize our 

theoretical knowledge of the dominant processes that are known to be active in terrestrial hydrology. This allows for clearly 25 

separable descriptions of distinct processes, which in turn provides hypotheses that can in principle be individually 

scrutinized and tested against observations (Gupta et al., 2008; Clark et al., 2015). Firmly based on our understanding of the 

underlying, small-scale physics, the development of bottom-up models is directed towards a meaningful representation of 

natural feedback between individual parts of the system. In a non-linear system, characterized by spatial heterogeneity, 

threshold processes and boundary conditions that are variable over a wide range of scales, newest-generation 30 

implementations of this inductive approach to hydrology were shown to have the potential to reproduce emergent pattern, 
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such as the effect of preferential flow paths (e.g. Zehe and Blöschl, 2004; Kollet and Maxwell, 2006; Zehe et al., 2006; 

Sudicky et al., 2008). 

2.2 The basis of top-down models 

Top-down models are in the first instance based on the information in the available data. For most catchments worldwide 

this is, at best, limited to (ideally areal) estimates of precipitation and potential evaporation as well as stream flow. Thus, the 5 

starting point are not process descriptions that result from anecdotal observations and theoretical considerations at the small 

scale but rather the system integrated, emergent response pattern as characterized by the available observations at the 

catchment scale.  

The difference between the input (e.g. precipitation) and output signals (e.g. stream flow) integrates the effects of natural 

heterogeneity, internal organization and process feedback and describes the low-pass filter properties of a catchment. As a 10 

low-pass filter a catchment buffers the high-frequency components of a random input signal (i.e. precipitation) in storage 

components and eventually releases the input signal with system specific time lags as stream flow or evaporation. In other 

words, the input is approximated by a dirac delta function for each model time step. This input signal then undergoes, at all 

scales of relevance, spatial and temporal dispersion in its most general sense before it reaches the catchment outlet. Such a 

domain-integrated dispersion pattern results from a suite of individual, functionally distinct dispersive effects. On the one 15 

hand, a spatially uniform input signal experiences dispersion due the distribution of different flow path lengths in a 

catchment: water that enters the system close to the catchment divide in the headwaters will have to travel longer distances to 

the outlet than water entering the system just next to the outlet. Water travelling longer distances is therefore likely to arrive 

later at the outlet (“geomorphologic dispersion”; e.g. Rinaldo et al., 1991; Snell and Sivapalan, 1994). On the other hand, a 

water volume entering at one specific location in a catchment can be partitioned to follow different flow paths such as deep 20 

groundwater or overland flow. Controlled by the respective flow resistances and gradients along these flow paths, this results 

in different flow velocities, thereby introducing a second source of dispersion (“kinematic dispersion”; e.g. Botter and 

Rinaldo, 2003), which is also reflected in the dichotomy of hillslope vs. channel dispersion (e.g. Robinson et al., 1995).   

Top-down models, interpreted as simple filters, aim to reproduce these catchment-scale integrated dispersion patterns, 

which reflect catchment-internal organization and feedback. Such approaches which do not explicitly invoke process 25 

interpretations have a long history and include the instantaneous unit hydrograph (IUH) and extended concepts (e.g. 

Rodriguez-Iturbe and Valdes, 1979; Rinaldo et al., 2006). The main challenge for top-down models is to identify and 

represent  the dominant individual flow paths with typically distinct dispersion properties as well as their temporally variable 

hydrological connectivity and interactions that link the various subcomponents of the heterogeneous flow domain. In doing 

so, top-down models obtain a suitable description of the non-linear effective input into these flow generating subcomponents 30 

from a buffer component whose storage volume is controlled by the energy input and thus by the evaporative demand.  

Many top-down modelling studies use only a simple distinction between low and medium pass filter properties, i.e. two 

storage elements operating at different timescales, which are fed by effective input obtained from a rough approximation of a 
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non-linear storage buffer, which describes the dynamic partitioning into evaporative fluxes and drainage that reflect the 

underlying spatial organization of connectivity. These simple flux parameterizations can in many cases produce good first 

order estimates of hydrological response dynamics. 

Thus, top-down models are based on observed input-output relationships, without further assumptions on the actual flow 

system; in contrast to bottom-up models, this approach does not, in a first instance, explicitly define and describe actually 5 

detailed underlying processes. For example, storage elements with the shorter process timescales can represent different 

mechanisms. Depending on the catchment under consideration they can be interpreted as representation of preferential flow, 

transmissivity feedback, overland flow or other fast responding processes. In its fundamentals rooted in purely data-driven 

thinking, top-down models therefore provide a means to reproduce dynamics that emerge at the scale of interest (e.g. a 

catchment) and that can actually be observed with very limited need for additional assumptions on other processes, which 10 

albeit active cannot be discriminated by the available data. Zooming out to the actual scale of the model application, strictly 

maintaining mass balance, and implementing a parsimonious representation of the energy balance, top-down models have 

proven to effectively represent the emergent patterns of partitioning of water fluxes through a few dominant flow paths with 

different dispersive properties, integrating catchment organization and internal feedback of the entire model domain, in spite 

of largely disregarding catchment-internal process complexity. 15 

 

3 Modelling myths – or not? 

There is a wide range of frequently communicated beliefs and assumptions on alternative approaches to modelling. They 

reflect different perceptions of modelling limitations. In the following sections we will scrutinize common modelling 

critiques (C1-C3) and discuss the extent to which we believe they are justified. 20 

3.1 (C1) “Top-down models have a poor physical and theoretical basis.” 

Since top-down models originate from empirical approaches to mimic the hydrological response only based on available 

observations, without further assumptions on the system internal processes, this statement does certainly have an element of 

truth. However, evaluating this statement requires considering the effects of scale and emergent properties of a system. Put 

simply, how do different modeling philosophies represent large-scale fluxes? 25 

To illustrate the physical basis of large-scale models, consider a gas volume with given boundary conditions and energy 

inputs (e.g. Savenije, 2001; Blöschl and Zehe, 2005). Under conservation of mass and energy, a functional relationship 

between energy input (i.e. pressure) and temperature can be established, characterizing the emergent properties of the system 

at the actual scale of the gas volume, i.e. the Gay-Lussac law. To understand the response of the system to energy inputs, it is 

in principle possible to describe the exact trajectories and velocities of the individual gas molecules and their interactions 30 

within the volume. This approach could, in theory, also form the basis of the Gay-Lussac law, and the same temperature 
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dynamics should emerge. Yet, currently available observational technology, e.g. to define the initial conditions of the 

systems, at scales of actual interest renders the molecular dynamics approach practically infeasible, untestable, and 

unnecessary. In spite of disregarding the actual small-scale physics, it is difficult to argue that Gay-Lussac’s law and similar 

observation-based, functional relationships at the macroscale, often considered natural laws, have a poor physical and 

theoretical basis. Rather, they are valuable descriptors of the system at the macroscale without loss of essential information, 5 

which remains encapsulated in the functional relationships by integration of system-internal heterogeneity and complexity. 

Similarly, water flows in a catchment follow the observable, physical phenomenon of dispersion, controlled by water and 

energy input, gravity, and flow resistances. The development of top-down models is then the process of identifying 

functional relationships between system input and the integrated output pattern emerging through organization at the 

catchment scale, i.e. the testing of competing hypotheses (e.g. Clark et al., 2011; Fenicia et al., 2011), without the need of 10 

resorting to small scale physics.  

The above arguments to some degree reflect the contrasting approaches of testing hypothesis vs. testing emerging patterns, 

and therefore the difference between deductive and inductive scientific reasoning (e.g. Salmon, 1967). If a large enough 

sample of different systems is available, the emerging patterns and the associated functional relationships (i.e. model 

hypotheses) can facilitate similarity analysis and classification, eventually allowing to “search for general laws at the 15 

macroscale” (Sivapalan, 2005). Although the value and need for this way of thinking in hydrology was already emphasized 

several decades ago (e.g. Klemes, 1983; Dooge, 1986) and echoed in several subsequent publications (e.g. Sivapalan et al., 

2003; McDonnell et al., 2007; Blöschl et al., 2013; Sivakumar et al., 2013; Gupta et al., 2014) it only recently gained 

significant momentum (e.g. Lyon and Troch, 2007; Carillo et al., 2011; Sawicz et al., 2011; Coopersmith et al., 2012; 

Berghuijs et al., 2014; Fenicia et al., 2014; Li et al., 2014; McMillan et al., 2014).   20 

In spite of not being explicitly based on small scale physics, top-down models may thus nevertheless be considered as 

physically based, yet on a different scale: on the macroscale. This is furthermore in particular true as on the one hand they do 

largely satisfy conservation laws at the catchment scale, as (1) they rigorously maintain mass balance, and (2) they provide a 

reasonable and parsimonious representation of the energy balance, which can be meaningful if carefully constrained not only 

with respect to the hydrograph but also with respect to the observed runoff coefficients on a range of scales (e.g. annual, 25 

seasonal and event-based), which defines the partitioning between streamflow and evaporative fluxes (e.g. Budyko, 1974; 

Donohue et al., 2007;  Sivapalan et al., 2011) plus potential deep infiltration losses (e.g. Andreassian and Perrin, 2012). Such 

large-scale conservation equations require large-scale flux parameterizations (i.e. the closure problem). Such large-scale 

fluxes are typically estimated as a function of system-average water quantities (storage S), reflecting the integrated gradients 

in the model domain, and system-average resistances (storage coefficient k), i.e. Q=f(S,k).  30 

The purported physical basis of macroscale laws permits that a physical meaning can and actually should be assigned to all 

processes in top-down models. Yet, the physical structure of top-down models has in the past frequently only been defined in 

a casual way by loosely “interpreting” the hydrological function of individual model components with respect to the real-

world system under investigation and the model used. For example, for typical 3-box models such as HBV, the fast 
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responding component has been previously interpreted as overland flow, shallow subsurface flow, pipe flow or simply as a 

vague quick flow component, essentially lumping these processes (e.g. Wood et al., 1992; Jakeman and Hornberger, 1993; 

Madsen, 2000; Seibert et al., 2003; Koren et al., 2004; Uhlenbrook et al., 2004; Fenicia et al., 2008). However, without 

detailed testing, such interpretations of their physical basis remain somewhat ambiguous and subjective.   

It is therefore desirable and eventually necessary to explore methods to more objectively and rigorously test individual 5 

model sub-components against observations (Clark et al., 2011) and/or to assign physical meaning to them a priori (cf. 

Bahremand, 2016). A potentially effective starting point for the latter is to use observations at the modelling scale to infer 

information about the functional shape (i.e. parameterization) and to quantify the actual parameters of individual processes at 

that scale. Examples include the recession behaviour of catchments in dry periods. If long enough observation records are 

available, Master Recession Curves (MRC) can be constructed directly from data (Lamb and Beven, 1997). Notwithstanding 10 

potential sources of uncertainty, such as (1) in observations (Beven et al., 2011), (2) arising from potentially interacting 

processes, e.g. evaporative fluxes (Fenicia et al., 2006) or deep infiltration losses (Hrachowitz et al., 2014), as well as (3) the 

role of spatial storage heterogeneities (Spence et al., 2010) a MRC can hold considerable information. From this both, a 

meaningful set of possible parameterizations as well as feasible prior parameter distributions for the slow responding model 

component can if not determined at least be considerably constrained. As it is well established that stream flow in dry 15 

periods is most commonly sustained by deep groundwater, assigning this quantitative information to the slow responding 

model component then objectively defines it as groundwater component at the observation and modelling scale. Similarly, 

there is strong evidence that the water holding capacity in the unsaturated root zone (SU,max), which is the core of many 

hydrological systems as it controls the partitioning of drainage and evaporative fluxes, can be robustly estimated at the 

catchment scale based on the long-term water balance, i.e. observations of precipitation and stream flow (or, if available, 20 

actual evaporation; Gao et al., 2014; deBoer-Euser et al., 2016; Nijzink et al., 2016a). 

These system components quantify actual physical properties present and physical processes active at the observation and 

modelling scale and therefore provide a clear physical meaning to different parts of a model. Defining the ranges of 

operation of individual model components in such an evidence-based way and thus assigning some level of physical 

meaning to the different components, does not only reduce the feasible model space (i.e. parameterizations and parameter 25 

values) but it has also the potential to increase a model’s hydrological consistency while reducing its predictive uncertainty. 

Such a reduction of degrees of freedom in a model will in many instances lead to “sub-optimal” model performance with 

respect to some calibration objectives, as the a priori constrained processes will have less possibility to compensate for other 

model errors and to produce the right answers for the wrong reasons (cf. Kirchner, 2006). Reduced performance is then a 

clear indication of, besides observational uncertainty, an incomplete or inadequate representation of the remaining dominant 30 

partitioning points of the system. 

We therefore argue that top-down models do have in principle, if well implemented and tested, a robust physical and 

theoretical basis and that it is possible to relate the structure of top-down models to stores and fluxes in nature (e.g. Clark et 

al., 2008; Fenicia et al., 2016), albeit at a different spatial scale and process resolution than bottom-up models. These types 
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of models emphasize the value of zooming out and understanding the system from the point of holistic empiricism. 

However, this is not to say that there is not considerable room for improvement. This is in particular true for an explicit 

physically consistent treatment of the energy and momentum balances. Closely linked to that is the question to which level 

of detail the dominant catchment processes can and have to be resolved to reproduce the observed system response in a 

meaningful way, which directly leads to statement C2.  5 

3.2 (C2) “Top-down models are too simplistic and cannot adequately represent natural heterogeneity.” 

Simple lumped top-down models, such as HBV, have a long track record of, at first glance, successful applications in a 

wide range of catchments world-wide. However, this success is in many cases deceptive and needs to undergo more critical 

scrutiny. The reason is that these models are often used in a quasi-inductive way with an implicit a priori assumption that 

they are a meaningful representation of the system, thereby not treating the model as a hypothesis and not testing alternative 10 

formulations. This is exacerbated by a frequent lack of robust (multivariate) calibration and systematic and exhaustive 

(multivariate) post-calibration evaluation procedures to ensure that the overall modelled system response, including 

emerging patterns such as flow duration curves, reproduces the observed response dynamics in a meaningful way. 

 The importance of adequate representations natural heterogeneity has for a long time been highlighted (e.g. Klemes, 1986; 

Andreassian et al., 2009; Clark et al., 2011; Gupta et al., 2012). However, typical model calibration is limited to time series 15 

of streamflow observations and provides merely insight into a very small number of parameters (Jakeman and Hornberger, 

1993). Thus, although any additional model process has the potential to improve the representation of heterogeneity and 

subsequently the calibrated model performance, the required additional flux parameterizations and calibration parameters 

increase the feasible model (or parameter) space and the resulting potential for equifinality (Beven, 1993), thereby turning 

models into the oft-cited “mathematical marionettes” (Kirchner, 2006). In spite of a high skill to reproduce the calibration 20 

objective, such a model will in many situations struggle to simultaneously reproduce different additional system internal 

dynamics (e.g. groundwater fluctuations) and emerging patterns (e.g. flow duration curves), indicating its failure to 

meaningfully represent dominant processes and their heterogeneity in a catchment, which in turn often results in a poor 

predictive power of these models. This was in the past demonstrated by many studies (e.g. Jothityangkoon et al., 2001; 

Atkinson et al., 2002; Fenicia et al., 2008; Euser et al., 2013; Coxon et al., 2014; Fenicia et al., 2014; Hrachowitz et al., 25 

2014; Willems, 2014).  

The lack of an adequate model calibration, testing and evaluation culture partly arises both from insufficient exploitation of 

the information content of the available data, and also the real lack of suitable data to more effectively constrain models 

(Gupta et al., 2008; Clark et al., 2011). Under these conditions, many models remain ill-posed inverse problems. To limit the 

associated problems, i.e. equifinality, Occam’s razor is commonly invoked to make models “as simple as possible but not 30 

simpler” (e.g. Clark et al., 2011). But how simple is “as simple as possible”? Or in other words, how large a model space 

(i.e. possible parameterizations and prior parameter space) can be constrained with available information to identify 

reasonably narrow posterior distributions while ensuring a high as possible multivariate model performance? 
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The fundamental question that needs to be addressed in any model application is which model complexity is supported by 

the available data, including both process complexity, i.e. the detail to which models explicitly represent specific processes; 

and spatial complexity, i.e. the extent to which models explicitly represent details of the landscape and the lateral flow of 

water across model elements. We will address each of these issues in subsequent sections.  

3.2.1 Process complexity 5 

Process complexity in terrestrial hydrological systems is, at its fundamental level, characterized by two major partitioning 

points that control how water is stored in and released from catchments through upward, downward or lateral fluxes (e.g. 

Rockström et al. 2009; Clark et al., 2015; Savenije and Hrachowitz, 2016). Near the land surface, precipitation is split into 

(a) evaporation and sublimation from vegetation and ground surface interception (including snow) as well as from open 

water bodies, (b) overland flow and (c) infiltration into the root zone. Water entering into the root zone, is further partitioned 10 

into (d) soil evaporation, (e) plant transpiration, (f) shallow, lateral subsurface flow through preferential drainage features, 

such as shallow high permeability soil layers, soil pipe networks or a combination thereof and (g) percolation to the 

unsaturated zone and the groundwater below the root zone.   

All fluxes (a-g) are present in essentially any catchment, albeit with different relative importance in different environments, 

and therefore need to be represented in a model. This can be illustrated with the occurrence of weather events that are 15 

uncommon for a specific region. In the Atacama Desert, one of the driest places on earth with little or no vegetation under 

average conditions, uncommonly high spring precipitation, such as in 2015, can cause episodic appearance of abundant 

vegetation. This temporally changes the partitioning pattern and thus the hydrological functioning of the region as plant 

transpiration that is otherwise absent is “activated”. Similarly, rare occurrences of snow fall can cause temporal anomalies in 

the hydrological functioning of otherwise warm regions, such as 2013 in the Middle East. In spite of them being “de-20 

activated” most of the time, such processes are in principle present and need therefore also be conceptually reflected in any 

hydrological model structure. However, if considered negligible in a specific environment during a modelling period of 

interest, the modeler can decide to deactivate individual processes by using informed prior parameter distributions. In other 

words, the respective parameters will be set to suitable fixed values that effectively switch off the process using Dirac delta 

functions as prior distributions.   25 

Largely independent of modelling strategy (top-down vs. bottom-up) the key decision for the modeler in any given 

catchment is then to decide to which level of detail the individual processes at the two partitioning points will be resolved 

and how they can be parametrized (cf. Gupta et al., 2012). The questions to be answered are: How much detail is necessary 

to reproduce observed dynamics and pattern? How much detail is warranted by the available data to meaningfully 

parameterize and test the chosen process representation? Two examples of different processes are provided in the 30 

Supplementary Material (S1 and S2) to illustrate the thought process involved. 

 Specifically, many parts of the system need to remain conceptual simplifications, as with increasing complexity, non-linear 

systems become increasingly problematic to predict with detailed, small-scale descriptions, due to uncertainties in the 
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necessary observations of boundary conditions, forcing and system states (e.g. Zehe et al., 2007). Conceptualization can then 

entail either, for a detailed process representation, using a high number of effective parameters, which are mostly unknown 

(and thus need to be calibrated) or potentially unrepresentative (if inferred from direct observations) for the model domain, 

to describe the system, or zooming out and exploiting simple functional relationships (or pattern) emerging as a result of 

organization at the macroscale, thereby significantly reducing the number of required effective model parameters. 5 

Importantly, this lumping process does not, as long as the simplification encapsulates the relevant dynamics of the system, 

necessarily involve a loss of information. Rather, it has the potential to integrate the interaction of heterogeneous processes 

at the microscale over the entire domain of interest and thereby to provide a system description that is consistent with real 

world observations at the scale of interest without the need for further assumptions and the related uncertainties.   

3.2.2 Spatial complexity 10 

Natural systems are commonly characterized by considerable heterogeneity in boundary conditions and system forcing, the 

“uniqueness of place” as eloquently referred to by Beven (2000). This heterogeneity spans over several orders of magnitude 

in scale, from the microscale (e.g. soil particles) to the continental scale (e.g. mountain ranges) and it is highly unlikely that 

observation technology will ever enable a comprehensive and non-invasive description of the heterogeneity in hydrologic 

systems, especially for large model domains.   15 

 Analogous to the process complexity, the degree of spatial complexity that can be incorporated in a model hinges on the 

detail of available information on the system. More specifically, which types of heterogeneity are present? How do they 

affect water storage and release in different ways? Which types of heterogeneity can be captured by a single emergent 

functional relationship and for which types of heterogeneity several individual functional relationships at the macroscale are 

necessary to meaningfully represent real world pattern?  20 

In summary, the problem of spatial complexity is therefore rather multifaceted and an illustrative example is provided in 

Supplementary Material S3. It is true that untested and poorly evaluated applications of standard top-down models are often 

oversimplifications that do not adequately reflect natural heterogeneity and its effects on the hydrological response. 

However, top-down models can be formulated at any level of process and spatial complexity, limited only by the available 

information. The actual problem is therefore not the top-down model per se but rather the way it is implemented and applied. 25 

The decision, which degree of zooming out, i.e. which level of detailed process representation is feasible and which level is 

necessary, eventually needs to be made by the modeller on basis of the available observations, acknowledging that all 

hydrological models at the catchment scale are to a certain extent conceptualizations. When carefully implemented, spatially 

distributed formulations with an equilibrated balance between process heterogeneity and information/data availability and 

tested and evaluated against multivariate observed response dynamics, top-down models have been shown to be versatile 30 

enough to identify and represent the dominant hydrological processes and their heterogeneity in a catchment (e.g. Fenicia et 

al., 2008a,b; Hrachowitz et al., 2014; Nijzink et al., 2016b) within limited uncertainty. Mirroring the statement that top-down 

models are too simplistic and do not represent heterogeneity, it may however in a similar way be valuable to discuss the 
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question if, in the absence of appropriate observations at the scale and resolution of interest, bottom-up models with high 

process and spatial complexity are not somewhat deceptive about the accuracy that is implied by their formulation, which 

directly leads to C3.   

3.3 (C3) “Top-down models are ad-hoc formulations of untestable hypotheses and always need calibration” 

It is true that many applications of standard top-down models, such as HBV or FLEX, have lacked due diligence in the 5 

choice of suitable process and spatial complexity and the constraints/information placed on the prior parameter distributions 

(to de-/activate processes) of a model in a given catchment. Such a frequently unquestioned use of off-the-shelve models 

implicitly assumes that these models can adequately represent observed hydrological response dynamics in different 

catchments. This ignores that any model is an assemblage of hypotheses consisting of individual building blocks and their 

parametrizations, encapsulating the modeler’s understanding how a specific environment shapes the hydrological system. 10 

For example, HBV was developed and tested for applications in cool and humid environments, characterized by high 

volumes and limited seasonality of precipitation together with limited energy supply for evaporation. In such a situation, 

many of the processes that introduce non-linearity and control the emergence of hydrologic connectivity are not dominant or 

even negligible, in contrast to arid environments (see also the example S4 in the Supplementary material). The point is that 

different environmental conditions dictate the need to test if the prior information on the parameters needs to be changed 15 

and/or relaxed so as to activate a process that was deactivated in a model previously used in other environments (or vice-

versa) to adjust the model to the prevailing environmental conditions.  

A meaningful decision on the use of given prior parameter distributions and their information content for a model 

application in a specific environment can be made if the model hypothesis is carefully tested. However, it is sometimes 

argued that entire models are untestable hypotheses, as they represent a range of different processes or parts of the system. 20 

Models, therefore, need to be seen as sets of distinct hypotheses that need to be tested independently to avoid the adverse 

effects of equifinality (Clark et al., 2011). When disaggregating a system, the pattern emerging at each subsequent level of 

detail are, down to molecular levels (or maybe even beyond), a result of the interactions of heterogeneous processes at yet 

smaller scales (see section “process complexity”). Thus, down to that level, every hypothesis consists of several other, 

smaller scale hypotheses. The relevant question arising here is, to which level do model components then have to be 25 

disaggregated to be constitute testable hypotheses? Thus, of course, treating a model as a single hypothesis does not make 

the hypothesis untestable. Rather, given the system-integrated nature of many observations and the frequently limited 

number of performance indicators considered to test the model against, it may in many cases remain a relatively weak test. In 

contrast, individually testing sub-components of the system will provide the modeler with more information because its sub-

components are necessarily less complex than the overall model. This, in turn, provides less possibilities for compensating 30 

misrepresentations of one process by wrongly adjusting other processes. In other words, it will have higher potential to avoid 

Type I errors (i.e. false positives), therefore resulting in a stricter test. The obvious problem arising here is less of theoretical 

than of practical nature: observations of system sub-components, including the often cited boundary fluxes (Beven, 2006a), 
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to test the model components against are typically not available at the scale and/or resolution of interest or not available at 

all, although with the ever improving spatio-temporal resolution and quality of remote sensing products the problem will 

potentially be somewhat alleviated in the near future. Clearly, from that perspective, weak model tests are in the frequent 

absence of other options preferable to no tests at all. 

The above point is very closely related to the necessity of calibration. If the system could be observed at the scale and 5 

resolution of interest (e.g. catchment scale for lumped models, grid scale for distributed models), there would be little 

additional need for testing as the system would be well constrained and its functioning well understood. Thus, much of the 

problems discussed above is a direct consequence of the absence of such observations. Whenever no adequate observations 

are available, a model requires calibration. Any model. This is not a limitation that is specific to top-down models. It equally 

applies to bottom-up models. The difference being that detailed bottom-up models may often provide a deceptive sense of 10 

accuracy if operated with highly informed prior parameters distributions (e.g. fixed parameter values or regularized 

estimates), based on anecdotal, point or plot scale observations that do not match the scale and resolution of the model 

domain (e.g. grid cell). 

We therefore argue that top-down models are not “ad-hoc formulations of untestable hypotheses” but rather often untested 

hypotheses that indeed do require calibration, as any other type of model. The actual problem therefore not being the model 15 

type (“top-down”), but the way these models are frequently applied in a careless way. 

 

4 Implications, potential ways forward and concluding remarks 

From the above discussion, a few relatively clear and unambiguous points define the basis, functioning and limitations of 

competing approaches for process-based hydrologic modeling. Condensing these points, it emerges that: 20 

(1) Top-down models, in spite of lacking explicit representation of small scale physics, represent the clear physical and 

observable phenomenon of dispersion. They strictly obey conservation of mass, and can provide, if well 

implemented, a parsimonious representation of conservation of energy. At the catchment-scale, the lack of small 

scale detail in these models is offset by embracing the value of zooming out to the macroscale, which in the realm 

of organized complexity is frequently characterized by the emergence of relatively simple functional relationships 25 

that describe individual processes and that, most importantly, integrate typically unobservable natural heterogeneity 

over the model domain. This provides a physical basis that is firmly rooted in holistic empiricism, similar to 

statistical physics (e.g. gas laws).  

(2) Top-down models can, in principle, be implemented with any desired detail. The key question is whether additional 

process complexity can be tested against and is justified by the available data. This is true for both process and 30 

spatial complexity, which also highlights that we are really crossing a continuum of complexity, where top-down 

models converge towards small-scale physics based bottom-up formulations. 
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(3) Top-down models can reflect our conceptual understanding of the system if all water fluxes associated to the two 

major terrestrial partitioning points, i.e. the near-surface and the unsaturated root zone, are represented. As all these 

fluxes can, in principle, be present in any environment, albeit with different relative importance, all top-down 

models therefore need to have the same fundamental model structure (but not necessarily the same 

parameterization) to reflect these processes.  5 

(4) Top-down models provide the flexibility for modelers to reduce the feasible parameter space and, if desired, to even 

deactivate specific processes, simplifying the model and reducing the number of calibration parameters and the 

associated problem of equifinality. For example, if a process is rarely occurring and/or otherwise not exerting 

significant influence on the system dynamics and is thus not warranted by data in a specific environment, the 

modeler can decide to use an informed prior parameter distribution for this process. Thereby the process-specific 10 

prior parameter distribution will be constrained or, in the extreme case, fixed to one value (i.e. Dirac delta function).  

(5) All hydrological models applied at scales beyond the plot scale require some degree of calibration, as direct 

observations of effective parameters at these modelling scales and resolutions are typically not available. This is 

also true for bottom-up models. The common practice in bottom-up model applications of applying parameters from 

observations that do not match the modelling scale and/or resolution may not provide a sufficient representation of 15 

the natural heterogeneity of this parameter can lead to considerable misrepresentations of the system and give a 

deceptive impression of accuracy.   

(6) All hydrological models are to some extent “conceptual” and to some extent “physical”, they largely only differ in 

the degree of detail they resolve the system, which in turn is dictated by the available data. While top-down models 

approach the problem from a macroscale physical understanding, bottom-up models emphasize the microscale 20 

perspective. An ideal model would, almost needless to say, provide an equally good representation of both aspects.  

(7) All macroscale hydrological models (i.e. hillslope, catchment), remain, in the absence of sufficient observations at 

the modelling scale and resolution, hypotheses and thus require rigorous, testing and post-calibration evaluation. 

(8) The fundamental problems in catchment modelling do not lie in the type of model used, but rather in the way a 

model is applied. All too often, models are not understood and treated as hypotheses, and thus insufficiently 25 

calibrated and tested for applications in different environments.  

 

Progress in catchment-scale understanding of hydrological functioning and the related development of models for more 

reliable predictions will not only benefit but does actually hinge on a better understanding of how natural heterogeneities at 

all scales aggregate to larger scales and how this influences the hydrological response. As already emphasized previously by 30 

many authors (e.g. Beven, 1989,2001,2006a; Kirchner, 2006; Zehe et al., 2014), these efforts to approach the closure 

problem in hydrology need to involve both, ways to reliably determine effective model parameters, i.e. the system boundary 

conditions, that integrate and reflect the natural heterogeneity within the model domain as well as the development of 

equations that are physically consistent at the scale of application. The latter can be illustrated with the use of the Darcy-
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Richards equation, which requires the assumption of local equilibrium, which does not hold beyond the plot scale (e.g. Or at 

al., 2015), for defining a meaningful matric potential.  

These scale and heterogeneity issues were acknowledged already in the early 1980s to be at the core of many problems for 

our understanding and modelling of hydrological systems (e.g. Dooge, 1986; Wood et al., 1988; Wood et al., 1990; Blöschl 

and Sivapalan, 1995). It was, for two decades or so, indeed a very active and fruitful field of research but it has somewhat 5 

lost momentum. Ten years after the landmark papers of Beven (2006a) and Kirchner (2006), remarkably little progress was 

made and many ideas and concepts did not find their way into mainstream hydrology. Nevertheless, it is imperative to 

understand how processes scale, heterogeneity aggregates and how this controls the emergence of patterns at the large scale. 

This then has the potential to enhance our understanding of what controls catchment functioning and our ability to develop 

models (e.g. Vinogradov et al., 2011). A potential way forward towards achieving this, may be the much advocated large 10 

sample, comparative hydrology to identify pattern and generally applicable, functional relationships (e.g. Blöschl et al., 

2013; Gupta et al., 2014). 

A further point that is indispensable if progress in catchment-scale modelling wants to be achieved and, in particular, top-

down models want to be used as scientific tools, is the need to establish a mainstream culture of robust model calibration, 

rigorous testing of alternative model formulations (i.e. hypotheses) as well as the systematic assessment of model 15 

uncertainties. We are currently in a position where we, in an exaggerated way, feed wrong models with wrong input data and 

calibrate them to wrong output data to obtain wrong parameters. In the light of so many unknowns, comprehensive, 

systematic, end-to-end uncertainty analysis needs finally to become a standard requirement of any scientific paper that 

involves modelling (e.g. Beven, 2006b; Pappenberger and Beven, 2006). With uncertainties in both parameters and 

parameterizations (i.e. “hypotheses” and thus model equations), besides observational uncertainties, it may be more coherent 20 

to combine both in a joint model uncertainty framework and to consider reporting results in model ensembles, similar to 

what is common practice, for example, in atmospheric sciences. In any case, systematic uncertainty analysis has the potential 

to significantly reduce type II errors, i.e. rejecting a good model when it should have been accepted (“false negative”; Beven 

2010) and is thus instrumental to avoid giving a false impression of accuracy in our models.  

Next to uncertainty analysis, stronger and more meaningful model tests, i.e. model calibration and post-calibration 25 

evaluation with respect to multiple variables and model states, including, data permitting, model sub-components (e.g. 

Willems et al., 2014; Clark et al., 2015), as well as to multiple criteria besides to commonly used time series of these 

variables needs to become a standard procedure. It was argued and shown in a range of papers that, although models 

frequently exhibit considerable skill to reproduce the hydrograph during calibration and, albeit to a lesser degree, also during 

“validation”, many of these models struggle to reproduce other system relevant features. This includes, for example 30 

groundwater table fluctuations (e.g. Fenicia et al., 2008), long-term average runoff coefficients as a proxy of average actual 

evaporation (e.g. Gharari et al., 2014; Hrachowitz et al., 2014) and solute dynamics (e.g. Birkel et al., 2010; Fenicia et al., 

2010) as well as hydrological signatures of these components other than the time series, e.g. duration curves. While some of 

these signatures (e.g. runoff coefficient) can often be readily reproduced, it is was observed that others, such as the 
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autocorrelation structure as a metric for the memory or persistence of a system are often less well captured by a model (e.g. 

Euser et al., 2013; Hrachowitz et al., 2014). Such a comprehensive model testing approach has the potential to identify and 

reject models (i.e. parameters and parameterizations) that “do not meet minimum requirements” (Vache and McDonnell, 

2006), which in turn has the potential to considerably reduce type I errors, i.e. falsely accepting poor models when they 

should be rejected (“false positive”; Beven, 2010).   5 

Finally, it may also be desirable to drop the somewhat arbitrary dichotomy between top-down and bottom-up models, 

which has in the past caused considerable confusion. Rather, acknowledging that all models are to some degree conceptual, 

and that often not the actual models are the problem but the inadequate way they are applied, may open up the view towards 

the real fundamental questions in catchment-scale modelling: how much detail do we need in our models and how much 

detail is warranted by data? To find a balance that allows us to best describe the system based on scientifically robust 10 

grounds will therefore benefit from accepting a more rigorous culture of model testing, to adjust process and spatial 

complexity to the environmental conditions and data availability in specific catchments. This will reduce the risk for 

oversimplifications and system misrepresentations when approaching the problem from the top-down perspective. In 

contrast, approaching the issue from the bottom-up perspective could potentially substantially benefit from embracing the 

value of zooming out and making use of emergent processes, which otherwise would be highly problematic to identify and 15 

parametrize. On balance, we believe that modelling of catchments will significantly benefit from and may even require a 

convergence of top-down and bottom-up strategies, in particular with respect to exploiting the features of organization in 

these complex systems (Dooge, 1986) in a hierarchical way, as for example suggested by Zehe et al. (2014).  In that sense 

we would like to strongly encourage researchers to not only acknowledge but to actively make use of advantages the 

respective other modelling strategy has to offer in order to strengthen their very own models. 20 
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